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Abstract. A convenientstructureof Lie group to the entire group Aut P of G-
automorphismsof a principal G-bundle without any assumptionof compactness
on the structuregroup G or on the basemanifold. Its Lie algebraand the expo.
nential map are illustrated. Somerelevant principal bundlesare discussedhaving
Aut P or its subgroupGauPofgaugetransformationsas structuregroup.

1. INTRODUCTION

lnfmite dimensional Lie groups or infinite dimensionalLie algebrasarenowa-

days understoodas unavoidabletools in the formulation of theories of funda-

mental interactions.

The group DiffM of diffeomorphismsof a manifoldM is quite familiar since
long time to people working in General Relativity. More recently the group

Gau P of the gauge transformationsof a principal bundle (P, p, M, G) gained

asimilar popularity amongpeopleworking in Yang-Mills theories.

Convenient smoothnessstructure for these groups have beenproposedalong

with realizations of their Lie algebrasand propertiesof the exponentialmap

havebeeninvestigated([1,2, 3]andreferencestherein, [4,5,6,7,8]).
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When one is interestedin coupling gaugefields andgravity,a suitablegroup to

be consideredseemsto be the groupAut P, the groupof the automorphismsof
P. An automorphismof P inducesa diffeomorphismon the base manifold and,
in the caseof a trivial P or of the bundle LM of linear frames,the groupAut P

is an extensionof DiffM by GauP.

Although the group AutP is a subgroupof Diff P from algebraicpoint of
view, the inherited topology is discrete,hencethe Lie structuretrivial, in the case

of non compactstructure group. This difficulty appearsalready in the group
Gau P when consideredas a subgroupof Diff P [9]. This pathology cannotbe

avoidedin the relevant caseof frame bundles.As in the caseof Gau P the way

out of the difficulty is to interpretethe entireAut P as a spaceof sectionsof a
suitablefiber bundle.More generally,homomorphismsof principal bundlesmust

be convenientlyconsideredas sectionsof a naturally constructedfiber bundle.
In Sec 2 we investigate the spaceHorn(P, P’) of homomorphismsof two G-

principal bundles and give it a structureof NLF-manifold. In particular the

smoothnessof the evaluationmap Eu : P x Horn(P, P’) -~ P’ is proved.This map
- or its restriction to Aut P or GauP-is relevantin the cohomologicalinterpreta-

tion of anomalies[10]. Universalanomaliesare generatedby pulling backcoho-

mology classesof classifyingspacesvia Eu.

The Lie structure of the groupAut P, its Lie algebrasand the exponential
map are illustrated in Sec.3. Gau Pis provedto be a splittingsubgroupofAutP.

In the last section we discuss some principal bundles.We prove that Horn

(F, F’) isa GauP-principalbundlewith basemanifoldan opensubsetof C~(M,M’).

In the caseF’ is a universalbundleEG, this fibration canbe of interest for the
relationbetweengauge theoriesandsigmamodels.Moreoverthe actionof Gau F
on Horn (P, EG) is linked with the action of Gau P on the principal connections

via the universalconnectiontheorem.The case of G = U(k) andM a compact

manifoldsis widely discussedin [11].

As a corollary we havethat the exactsequenceof NLF-Liegroups 1 -~ GauP -+

Aut F -÷ Diff~M -* 1 is in turn a principal bundle.The groupDiff~Mis an open
subgroupof Diff M containingthe connectedcomponentof the identity (and

coincideswith the entireDiff M if P is trivial or some other naturalbundle).
Moreover, using the results in [14] concerningthe action of Duff M on the

spaceEmb (M, M’) of the embeddingsof M into M’, we obtain that the spaceof

G-equivariantembeddingofPintoP’ is anAutP-principalbundle.

2. SMOOTHNESSSTRUCTUREON HOM(P, P’)

Let (F, p, M; G) and (P p’, M’; G) be two G-prmcipalbundleswith M, M’

ordinary smooth manifolds and G an ordinary Lie group. We want to endow
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Horn(P, F’), the set of G-homomorphismsfrom (F, p, M; G) to (F’, p’, M’; G),

with a convenientsmoothnessstructure.

Our approachis basedon the identification of Hom(P, F’) with the set of

(smooth) sections of a bundle resulting from a naturalconstruction.Such an
identification is alreadyknown. Using (8.2) of [12] one canidentify Horn(F, F’)

wih the space of the sectionsof PEP’] = (F x G~’ Pp’ M), the bundlewith fiber

F’ associatedto P. Here we prefer to look at this bundlein a slightly different
way. The resulting identification is closerto the one well known in the caseof

morphismsof vector bundles,so we first illustrate our procedurewith a short
discussionof this latter case.

For two (smoothfinite dimensional)vectorbundles(E, p, M) and (E’, p’, M’),

a homomorphismfrom (E, p, M) to (E’, p’, M’) is a fiber preserving(smooth)
map A : E -* E’ such that the restrictionof A to eachfiber is a linear map. We

denoteby Horn(E, E’) the space of all homomorphismsfrom E to E’. By the
very definition of homomorphisma (unique,smooth)map A : M -+ M’ exists,

making the following diagramcommutative

~__

M

Forx EM andx’ EM’,let L(EX, E~,)bethelinearspaceof the linearmappings
fromE~toE~~,andput

L(E,E’)= U L(E ,E’,).

(x,x’)EMxM’ X X

With the sourcemap ft L(E, E’) -~ M, c~(A~~ = z andthe targetmap w
L(E, E’) -÷ M’, w(A~~~)= x’, (L(E, E’), ~ x w, M x M’) is a vector bundle.

We denoteby L1 (E, E’) the fiber bundle (L(E, E’), a, M) and by FL1 (E, E’)
the spaceof its sections.

For A E Horn(E, E’) andx EM, let A~be the restrictionof A to the fiber over
x. Then a map FA : M -÷ L(E, E’) is definedby FA (x) = A~,x E M. Clearly,
r’A E FL1 (E, E’). One easily recognizesthat the map F A -÷ FA hasfunctorial

nature.Actually, F is a naturalequivalenceof the functor Horn( , ), with the
functorFL1( , ).

It is thereforenatural to identify Horn(E, E’) with FL1 (E, E’) (seefor instance
[13]). Using (10.9) of [14] we can endowHorn(E, E’) with a structureof C~-

manifold modelled on a suitable nuclearspace,inductive limit of nuclearFré-
chetspaces(aNLF-space).
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Let now come to the principal bundles.We recall that a G-homomorphism
from (P, p, M; G) to (F’, p’, M’; G) is a G-equivariant(smooth)map p : F -~ P’.
In the following Horn (P. F’) will meanthe set of G-homomorphismsfrom (F, p,

M; G) to (F’, p’, M’; G), ErnbG(F, F’) the subsetof Horn(F, F’) of embeddings,
Jso(P,F’) the subsetof G-isomorphismsandAutP thegroup Iso (F, F).

By the detiniton of G-homomorphisrna (unique, smooth)map sp : M -+ M’
exists,making the following diagramcommutative

P ‘~

‘p~M

Thus the map ~ : Horn (F, F’) -÷ C~(M, M’) can be defined,with associates

to each G-homomorphismp the inducesmap p~.Its image will be denotedby
C” (M, M’). We also denotethe image of ErnbG(F, F’) by Emb (M, M’) and the

image of Iso(P, F’) by Diff~(M, M’). The subgroupof G-automorphisms~ such
that ‘p = idM — often calledstrong(or vertical) automorphisms— is well known
amongphysicistsas the group of gaugetransformations.We denoteit by GauF.

Weintroducethe following maps:

Ev :Px Horn (F, P’)-*F’, Ev(u, ‘p)=

Comp : Horn (F’, P “~ x Horn (F, F’) -÷ Horn(F, F”),

Cornp(~p’,p) = p’o ~

mv: Iso(P, F’) -÷ Iso(P’, P), Inv(~p) = p~.

Then (Comp(~p2,çc1))~=‘p~ o p~and (Inv(ça))~= (p~)’.

Considernow the set Eq(P~, P’s) of all G-equivariant maps from the fiber

to the fiber P~Eq(F~,F’,) is in bijection with G and consists of inver-

tible maps.Putting

Eq(P,P’)= U Eq(F~,F~)
(x,x ‘)EM xM’

and defining a sourcemap a : Eq(P, F’) -÷ M, ~ = x, and targetmap w
Eq(F, F’) -÷ M’, w(~o~~~)= x’, we can constructthe fibered set (Eq(P, F’), a x
o.,, M x M’). On the other hand, considerthe principal bundle (P x F’, p x
M xM’; G x G), delmea left actionof its structuregroup G x G on G by

((a, b),g)-+(a, b)g=bga~
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andconstructthe associatedbundle (P x P’)[G] = ((F x F’) x GxGG, (p x
M xM’) whosefibersare diffeomorphic to G.

To discussthe properties of Eq(P, F’) it is convenientto introducethe map

s~:P xP’ x G -*Eq(P, F’),

~(u, u’, g)(w) = u’gr(u, w) for p(w) = p(u).

where

r : FxMP-+G, definedby ur(u,u’)=u’

is the translation function ofF.

Wecan statethe following theorem.

THEOREM2.1. (Eq(P, F’), a x w, M x M’) and (F x F’) [G} are naturally iso-
morphicasfiberedsetsonM x M’.

Proof. The map s~factorsin a uniquebijection from (F x P’)[G] ontoEq(F, F’)

accordingto the following diagram

FxP’xG n -Eq(F,P’)

(FxF)xGXGG axw

(p x P’~G

id
MxM’ MxM’

Actually, r~is a surjection:for ‘p E Eq(P~,F~), choose uEF~then

77(u, ‘p(u), e) (w) = p(u) r(u, w) = ‘p(ui-(u, w)) = ‘p(w)

for every w E F~.Moreover, the fibers of i~areexactly the orbits of the joint

action of G x G on F x F’ x G. •

By the abovetheorem (Eq(P, F’), a x w, M x M’) can be identified with the

associatedbundle (P x F’) [G] and with this identification it becomesa smooth
fiber bundle. Therefore also Eq

1(F, F’) = (Eq(F, F’), a, M) is a smooth fiber

bundle.
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Note that the bundlesEq1(P, F’) = (P x F’) x GxG G, pr1 o (p x ~‘~G’ M)

andF[F’] = (F x G~’ ~ M) are isomorphic.This canbe easily seenintroducing

the maps:

p :FxF’ x G -+FxP’, p(u, u’, g)=(u, u’g)

and

P : P x F’ —* P x F’ x G, ~(u,u’) = (u, u’, e)

which are orbit preservingandsatisfy the relations

p o v(u, u’) = (u, u’)

o p(u, u’, g) = (u, u’, g) (e, g)

so thatp and u factorizeto give an isomorphismof Eq1 (F, F’) withF[P’].
We will feel free in the following to look at Eq1 (F, F’) as (P x F’) [ G] orF[F’]

dependingon technicalconvenience.

It is convenientto introducethe <<fiberwiseevaluationmap>>

ev:Px~Eq(P,P’)-+P’, ~

the <<fiberwise compositionmap>>

comp: Eq(P’, F”) x ~Eq(F, F’) -~ Eq(F, F”),

andthe <<inversion map>>

inv:Eq(P, P’)—~’Eq(P’, P),inv (~p,) = (‘p,)_1~

LEMMA 2.2. 1) The fiberwise evaluation map ev is a surjectivesubmersion.

2) Thefiberwise compositionmapcompis smooth.

3) Theinversionmapmvis smooth

Proof: I) Define evM : P x M (P x F’ x G) -* F’ by evM(uX, (v~,u~,g)) =

u’~gr(v~,u~).Clearlyev~is smoothanda surjectivesubmersion.Sinceu~gi(v~,
u~)=‘r7(v~,u~,g)(u~)= ev (ui, ‘I7(v~,~ g)), the following diagram com-

mutes:
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FxM(FxF’xG) evM

idpxMn~ ~

F XM Eq (F, F)

Since ic1~X M s~is a surjectivesubmersion,the quotientmap ev is smooth
andasurjectivesubmersion.

2) The map cornp is the quotient map of the smooth mapcompM” where

compM : (F’ x F” x G) x M’ (F x F’ x G) -+ F x F” x G,

compM ((u~,u~’,,,a),(u~,v~,b))=((u ~ v~,)b).

3) The map mv is the quotientmapof the smoothmap mv

mnyFF, :PxF’xG-s’P’xFxG,

inv~~(u~,u’., a)= (u~, u~, ar). •

For p E Horn (F, F’) andx E M, define (F) (x) E Eq(F, F’) as therestriction
of p to F~.The map F~: x~÷(F~)(x)belongsto FEq1(P,F’), the spaceof
smooth sections of Eq1 (F, F’), sincefor u EF~

F~(x) = ~(u, ‘p(u), e).

Therefore a map

F :Hom(F,F’)-+FEq1(F,F’), sp-~F~

can be defmed.

Analogously, for s E F Eq1 (F, F’), define : P -+ F’ by ~,(u) = s(p(u))(u)

for u EF. The map ~ is G-equivariant since for u E F andg E G

cb~(ug)= s(p(ug))(ug)= s(p(u))(u)g=

as s(x) is a G-equivariantmap for every x EM. By the obvious decomposition

41, = ev o (ide x s o p). we obtain that is smooth,hencea homomorphism.
Thereforea map 41 : F Eq1 (F, F’) -+ Horn (F, F’), s -~ 41, canbe defmed.The

map 41 is the inverse of the map F sincefor wE p~(p(u,))

~(u, tp(u), e)(w)= ‘p(u)r(u, w)
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sothatfors=F anduEF
‘p

(41) (u) = ~(u, ‘p(u), e)(u) = ‘p(ur(u, u)) = ‘p(u).

As a consequenceof theseargumentswe canstate.

THEOREM 2.3. The map F givesa natural equivalenceofthefunctorHom( ,)
with thefunctorF Eq1 ( , ).

We shall therefore identify Hom(P, F’) with FEq1 (F, F’) and give Hom(P, F’)

a naturalC~-manifold structure.

ThEOREM 2.4. 1) Honi (P. F’) is a NLF-manifoldand themap : Hom(P, F’) -÷

C~M,M’)isC~’~.2)EmbG (F, F’) and Iso~P, P’) are opensubmanifoldsofHom(F, F’).
3) C’~ ~M,M’), Ernb~(M, M’) and Diff~(M, M’) are open submanifoldsof

C°~(M, M’). They are closedin C~~M, M’), Ernb~M,M’), Diff~M,M’), respec-

tively.

Proof: We know that F Eq
1 (F, P’) is a NLF-manifold in the FD-topology

[14]; the local model at s is the NLF-spaceF,~ (~* Ver Eq1 (P, F’)) where J
7er

meansthe vertical bundle and F~the spaceof sectionswith compactsupport.

ThereforeHoin(P, F’) is a NLF-manifold. Denoteby w~the pushforwardof the

sectionsof Eq(P, F’) by meansof w, i.e. w* : F Eq
1(P, F’) —~C ~~M,M’), w*(s) =

w o s. This map is c,’ by (10.14) and (10.10)of [14] and coincideswith in

theaboveidentification. Hence is a C,~-map.

The image C ~ (Al, Al’) is preciselythe set of f E C CAl, M’) suchthat f*P’

is strongly isomorphic to P. Sincef is honiotopic to Ii implies f*P’ is strongly

isomorphic to h*P’ (without loss of generality for smooth homotopy), we see

that C ~ (M, Al’) (andits complementaryset)is a union of arcwise connected

componentsof C (Al, Al’), so that C ~ (Al, M’) is open and closedin theFD-

topology. The images Enib (Al, Al’) and Diff (M, Al’) of EmbG(P, P’) and

Iso(P, F’) are exactlyE,nb (Al, Al’) fl C ~ (Al, 114’) andDiJf(Al, M’) fl C ~‘ (Al, Al’),
so they are open by (5.3) and (3.7) of [141. By continuity of the C~- map

this implies that ErnbG (P, F’) andJso(P,F’) are opensubsetsof hoot lIP, F’). •

We stressthat the structure of Cc~- manifold given to Hom(P, F’) by the

above theorem agreeswith the structurewhich Hom~P,F’) inherits as a subset

of C (F, F’) only in the caseG is compact.In this case,JIom(P, F’) is a splitting

submanifold of C~~P,F’). Otherwise, the topology Hom(P, F’) inherits from

C~P,P’) is a discrete topology. This is rather unpleasant:think of the caseof
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Horn (E, E’), the spaceof vector bundle homomorphisms,wherethe fiber can

not be compact.Note that the canonicaltopology on L(R’1, R”) is the uniform
topology induced by operatornormandnot the discreteoneinheritedby C~(R~,

R’1).
We remark that Duff q Al = Diff~(Al, Al) is a NLF-Lie group asopenand closed

subgroup of the NLF-Lie groupDiff M and containstherefore the connected
componentof identity.

To concludethis section,we discussthe C~-propertyfor the canonicalmaps
Ev, Comp and mv. It was provedin (11.4) of [14] that the composition law of

smoothmappingsis aC~-maponly if it is restrictedto C~(M.Al”) x ~ (Al, M’),

where C,’rop (M, M’) denotesthe open submanifold of C~(M,M’) consisting

of proper mappings (see (11.6) of [14]). In dealing with G-homomorphisms

of G-principal bundles the same difficulty arises. One is thereforeinduced to

introducethe set of properG-homomorphisms

Horn~~
0~(F~F’)=~

1(C;rop(M,Al’))

which, by the above theoremis an open submanifold of Hom(F, F’). So we

obtain the following theorem.

THEOREM2.5. Let (F, p, M; G), (F’, p’, M’; G) and (F”, p”, M”, G) be G-

principal bundles. Then the following maps are C~:

1) Ev:FxHom(P,P’)-#F’;

2) Comp: Horn (F’, F”)xHom~~
0~(P~P’)-+ Hom(F, F”);

3) mv : Iso(F, F’) -+ Iso(F’, F).

Proof. We can factorizethesecanonicalmapsas follows.

1) By definitionswe obtain

Ev = ev o (ide x ev) o (Graph (p)) X F

that is

Ev(u, ‘p) = ev(u,F(p(u)))

for u EP and pEHom(P’,F”). By (11.1) and (11.7) of [14] andby 1), Lemma
2.2 we seethat Ev in CC°°.

2) Let s = F, s’ = F~and i~= ~ with ‘p E Hom~,0~(P~F’) and’p’ E

Hom(F’, F”).
Then

s= cornp o ((s’ o ‘p ~)x s).
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By Lemma2.2 and by (10.14) of [14] the map Compis C~°°if s’, s-~5’o W o5

is C~°°.But this is true since (Hom~~0~(P,F’)) = C°°prop(M~Al’) fl C~(Al,Al’)

is an opensubmanifoldof C~0~(Al, Al’).
3) Sincefor pE Iso (F, P’)

~ = mo F~o (‘pa )_1

mv is a C~
0~-map if the map s —* mv o s o (w o s)~is a C~°°-map. By Lemma2.2,

Theorem 2.4 and by (11.11) of [14], the <<push-forward>>s -÷ mv o s and the
map s -÷ (w o ~)_1 are C~ . Their composition is therefore a

C,~-map. •

3. THE NLF-LIE GROUP AutPAND ITS LIE ALGEBRA

In this section we analyzethe structureof the groupAutP of automorphisms

of a principal bundle (F, p, Al; G). The results of the abovesectionallow usat
first to prove that AutF is a NLF-Lie group. Then we give a naturalrealization

of its Lie algebraand its exponentialmap.

THEOREM 3.1. AutF isa NLF-Lie group andGauP isa closedsplittingnormal

Lie-subgroup of AutP.

Proof. By Theorem 2.4 we know that AutF is open in Hom(F, F); henceit

inherits the structure of NLF-manifold. The group laws are C~, sincethey are

respectively the map mv and the restriction of the map Comp to open sets.

ThereforeAutFis a NLF-Lie group.

Since GauP is the kernel of the homomorphism , it is a closednormal sub-

group of AutP. To prove that it is a splitting Lie-subgroup,we recall that GauP

is naturally isomorphicto theNLF-Lie groupof sectionsof theassociatedbundle

PIG] = (P x G G, ~G’ M), wherethe joint action is

(u,g)—~’(ua,a~ga) for aEG

and its Lie algebrais identified with F~P[g],whereF[g] = (P x ~ Al) deno-

testheassociatedbundlewith theAd actionof G on its Lie algebrag.
Considerthe embedding~ : P x G -÷F x P x G, (u, g) -~ (u, u, g). It is imme-

diate to verify that a unique exists making the following diagram commuta-

tive
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FxG ‘-PxPxG

FxGG I (FxF)xGXG G=Eq(P,F)

Id

It follows by the above diagramthat is smoothand open on its image. By
direct inspection one easily checksthat is injective. Recall that TP is turn a
principal bundlewith structuregroupTG. Hencethe tangentmap of is injective

for the samereason as~.Thus t is anembedding,F F[G] isasplitting submanifold

of F Eq1 (F, F) and the C~inclusionmapis simply ~*, ~*(s)= o s (see(I 0.8)and
(10.10)of [14]).

The rangeof ~, is contained in AutF, wich is an open submanifoldof FEq1

(F, F) and ~* is a grouphomomorphism. U

For a NLF-Lie group ~, the Lie algebra.~(s’) of ~1 is definedas usual
as the Lie algebra of left invariantvector fieldson ‘1 . Lie bracketscanbe defined

by meansof the identification of tangentvectorswith continuousderivations,
identification which remainstrue in the setting of NLF-manifolds [6]. As a

topological space,~(~) is identified with the tangent spaceat the identity
of~.

We known that AutF is an open subset of the NLF-manifold Horn(F, F)

FEq1 (F, F). The tangentspace at s E FEq1(F, F) is the NLF-spaceF~(s*Ver
Eq1 (F, F)) of sectionswith compactsupport of the pullback via s of the ver-

tical bundle of Eq1 (F, F). Hence the tangentspaceat the identity of AutF is

the NLF-spaceF~(e*Ver Eq1 (F, F)), where e denotesthe identity section of
Eq1(P, F), e(x) = id~,forx EM.

But anotherrealization of ~f’ (AutP) is expected. In fact, it is well known
that £~‘(Diff M) is naturally anti-isomorphicwith the Lie algebra ~~(M) of

all vector fields on Al with compactsupport [6]. Analogously, we well prove
that .~/?(AutF)is naturally anti-isomorphic with a suitable subalgebraof the
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Lie algebra 91G (F) of all G-invariantvector fields on TF.

To this purpose we need somepreliminaries. It is well known that (TF, Tp,

TM; TG) is a TG-principal bundle with the tangentaction. One can therefore

construct the associatedbundle (TF x TP’) [TG] with respect to the tangent

action of TG x TG. The related action is just the tangentaction of the joint

actionof G x G on F x F’ x G, definedby

The bundles T((P x F’) [G}) and (TP x TP’) [TG] are naturally isomorphic

as bundles on TM. Let Tp, r~,TM, TG and ~ denote the projections of the

tangentbundlesTP, TF’, TM, TG and (TF x TP’) [TG] over (F x F’) [C], respec-

tively. By the diagram

TPxTF’xTG rpxrpXTG ~FxP’xG

T((FxF’)[GJ)= (TFx TP’)[TG] T (PxP’)[G}=Eq
1(F, F’)

Ta~______________

TM .~Al

we see that Ta(T77(E~,~ , kg)) = Tp(~~)for (~, ~, kg) E TP x TF’ x TG 5°

that

ker Ta = VerEq
1(F,F’) = Tr~((VerF)x TP’ x TG).

LEMMA 3.2.Let uEPandu’EF’.The map

T~(0~,,0~) : T~F’_+(VerEq1(P,P’)),1(~~~)

is a linear isomorphism

Proof Injectivity is clear by inspectionof the formula. Surjectivity follows by

countingdimensions. U
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Note that rj(u, u, e) = e(x) if p(u) = x, where e is the identity section of

Eq1(F, F). As a first consequenceof the above lemma, the fiber on x of the

pullback e*Ver Eq1(F, F) is precisely { Tr1(0~,E~0~),~ E T~Ffor p(u) = x}.

Let ~ E Since for any g E C, Tfl(Oug~~(ug), Oe) = Tr~(0~,~(u), 0)
and ir(Tr~(0~,~(u), Oe)) = rj(u, u, e), we seethat a map

I: ~G(F)-1.F(e VerEq1(F,F))

I(~)(x)= Ti~(0~,~ 0~)for p(u) = x

is well defined.

LEMMA 3.3. The map I : .dIG (F) -~ F(e* Ver Eq1(F, F)) is a natural linear

isomorphism.Moreover,for ~ E ~G (F)

supp(I(~))= p(supp(~)).

Proof. Clearly I is a linear map and E(u) = 0 if and only if I(s) (p(u)) = 0.

Therefore I is an injection and supp(I(~)) = p(supp(~)).To prove surjectivity

of I, let u E F(e* Ver Eq1 (F, F)). By Lemma3.2, foreveryu EF with p(u) = x,

aunique ~ E T~,Fexistssuchthat
G(X)= TI7(0~,~~,°e~

By meansof local chartsone easily provesthat ~ :F-~TF, ~(u) = is a smooth

section. By uniquenessproperty one obtains that ~ E ~ (F), since for u E F

andg E C

T’t7(Oug~ ~ . g, Oe) = TI7(0~,~u’ ~ u(p(u)).

Clearly, 1(e) = a. .

As a consequenceof Lemma 3.3, the tangent spaceat e of AutP, i.e. the
NLF-space F~(e*Ver Eq1 (F, F)) is identified as linear space with the space

eC~(F) of all C-invariant vectorfields ~ on P suchthat p(supp(~))is a compact

set. We stressthat the topology on .~J~(P)inherited from theone of ~C(P)is
finer than that on Te (Aut(P)) = F~(e* VerEq1(F, F)) if G is not compact.

Even theelementsof the tangentspaceat ‘p E AutP, that is of the NLF-space

J
7er Eq

1(F, F)), where s = F, can be representedby meansof vector
fields in ~f C (F). Indeed T AutP can be written as T L T AutP or T R TG ‘p e ‘pe e ‘pe

AutP where L and R are the left and the right translation by ‘p on AutF. For

EE ~~(P)anduEFwithp(u)=x

(TeL’pI(~))(X)= Tr1(0~,(T’p o ~)(u), Oe)
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(TeRçc,I(~))(X)= Tr~(0~,(~o ‘p)(u), 0e)~

For every E E ?I~(P), we denote by L~the left invariant vector field on
AutF defined by L~(’p)= T~L~I(U,for p E AutF.

In NLF-manifolds, nothing is assuredabout existenceof flow of a general

vector field. However, it was proved in [6] that left invariant vector fields on
Duff M admit a global flow. This allows to prove the Lie-algebraic(anti)-iso-

moi~phismof -~ (Diff M) with ‘~~C (Al) and to define the exponential map. By
very similar argumentswe can obtain analogousresults in the caseof AutF.

In particular we prove that 2(AutF) is (anti)-isomorphicto the Lie algebra
f~ (F).

LEMMA 3.5. Every left invariant vector field on AutF admits a global flow.

Proof: First we remarkthat every ~ E ~ (F) admitsa global flow Fl : F x R -÷

F satisfying Fl(ug, t) = Fl(u, t)g for u E F, t E R andg E C. This follows easily

since p(supp ~) is compact and ~ is C-invariant. Since p(supp fl is compact,
there existsa compactsubset K of Al such that Fl(u, t) = u if p(u) ~ K. Now

constructthesmoothmap

a: Al x R -+Eq(F, F’), a(x, t) = i~(u,Fl(u, t), e)forp(u) = x,

and considerthe map R -÷F Eq
1(P,F), t -÷a,. with a~(x)=a (x, t), xEM For

every t E R, the sectiona~has support containedin K. By theargumentsused

in (4.4) of [6] one easilyprovesthat the map t —~ a~is aC~-mapand resultsto
be a one parametersubgroupof AutF. Thereforethe map a : AutP x R -+ AutF,

a(’p, t) = ‘p. a~is C~.
We claim that a is the global flow of L1. Actually, for ‘p E AutF and t E R,

d d d
a(’p,t)= — (‘p.a,.)=TL . — a.=

dt dt ~ dt

= TL’pTL~,.I(~)=L~(a(’p~t))

sincefor x E M

d d
—a(x)= —~(u,Fl(u,t),e)=
dt dt

= T17 (o~~— Fl(u, t), Oe) = T~(0~,~(Fl(u, t), Oe) =

= T7?(0~,(T~Fl( , t)) E(u), Oe) = TLaI(E)(X) = L~(a,.)(x).
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ThEOREM 3.6. TheLie algebra 1/’(Au’tF) is anti-isomorphicto the Lie algebra

Froof: We will show that the linear map I inducesa Lie-anti-isomorphism.

Wehavejust to provethat for every~, ~‘ E £~ (F)

[La, L~](e) = I([~’, fl).
To compute[La, L~~](e)we usethe formula

d

— ,.oa7L~.

where a denotesthe flow of LE and, for every vector field X on AutF, a7 is

given by

= Ta_,. o X o a~.

By the argumentin Lemma3.5we obtain

(La, o a,.(e))(x) = L~(a,.)(x) = (TeLaI(~’))(X)=

= Tn(0~,(T~Fl(., t) ~‘(u), 0e))~ x EM.

Hence by the above formula we have:

([LE, LE,](e))(x) = ~ (Ta_,. o L~o a,.)(e)(x) =

= T~(o~~—~0(T~Fl(., t)) o ~‘ o Fl(u, — t), Oe) =

= T~(0U, [s’,fl(u), 0~)= I([~’, fl)(x)

forxEM. •

The exponential mapping of AutF is the mapping

Exp : er ~ (F) = Te AutF -+ Au tF

which assignsto eachvectorfield ~E 1~’t’~(F) the automorphismofF

Exp ~= Fl(~)( , 1)

whereFl(s) : F x R -+ F is the global flow of ~.

By argumentsvery similar to that used in 4.6 of [6], one obtains that Exp
is a C~~-map.
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It is well known that the exponential map of the group of diffeomorphisms

of a manifold fail to be alocal diffeomorphism[1, 15] (seealso [16]. Reasonably,
we can expect the same feature of the exponentialmap of Aut P. Actually,

we shall see in the last section that the image Exp(er~(F)) doesnot contain

anyopenneighborhoodof e.
We known by Theorem 3.1 that Cau F is a splitting normal Lie subgroupof

Aut F. By meansof Theorem 3.6 we give anothernatural realization of the Lie
algebraof GauF.

Recall the embedding : Cau P —* Aut P and denoteby erv(F) the Lie al-

gebra of the vertical fields on F. Then the following theoremgiven the wanted

characterization.

THEOREM 3.7. The restriction of I to the Lie algebra er~p~~ ec ‘~P)is

a Lie-anti-isomorphismwith theLie algebra(T~~)(F~F[g]).

Proof: Remarkthat everyverticalequivariantvectorfield ~ on F can be expres-

sedas ~(u) = O,~.h(u), where h :F —~g is an equivariantsmoothmap.This realizes

a bijection betweenF~F[g] ander~(F)fl er’~(P).Considernow the embedding

Cau F —~ Aut F. The tangentmap T(t~)= (T~)~restricted to the tangent
spaceat the identity (Tt~): FCF [g] -+ F(e* VerEq1 (F, F) gives

(Tt* u)(x) = Ti~(0~,0~,h(u)) = T17(0~, 0~.h(u),Oe) = 1(e)

where h : F -÷g is the equivariantmap definedby u(x) = [(u, h(u)]G and~(u) =

0~,h(u) belongs to er ~(F) fl 9[u(p)~ Using the aboveremark one can easily
obtain that the map I is onto T~*(F~P[g]).It is clear that I is a Lie-anti-isomor-

phismof er~(F) fl eEu(p)with (TL*)(F~P[g]). U

Fixing a connection‘y on F, we can explicitly constructa projection on the

splitting subspaceI(er~(P)fl erv(F)) of Fc(e* Ver Eq1(F, F)). Let V~: TP -÷

-÷ Ver F be the projection on the vertical bundle defined by the connection y.

Then a continuous projection F~.on Fc(e* Ver Eq1 (F, F)) with range

(F) fl er’~(F))is definedby the following diagram

ec~(F) (VT)* f~(F)fl~U(F)

P

Fc(e* VerEq1(P,F) 7 .F~(e*VerEq1(P,P)).
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4. Hom(P,F’), EmbG (F, F’) ANDAutPAS PRINCIPAL BUNDLES

In the abovesectionwe haveseenthat Hom(F, F’) andEmbG(F, F’) are C°-
manifolds and that AutF is a NLF-Lit~group. Here we prove that they are in
fact principal bundles. In particularwe prove that AutF is an extension of Gaul’

in the categoryof NLF-Lie groups.

LEMMA 4.1. The sur/ection ~ : Hom(F, F’) -÷ Ci” (Al, M’) admitslocal sections

at everyfE C~(M,M’).

Proof : We recall, that for every fE C~(Al, M’), Graph (J) = idM x f is a sec-

tion of the fiber bundle (Al x Al’, pr1, Al). Hence there existsa tubularneigh-
borhoodW C Al x Al’ of its image,with vertical fibers, i.e. with projection Pp,i=

= (Graph(f)) o pr1 (see (10.9) of [14]). Choose a connectionon the principal

bundle F x F’ and use the induced connection ‘y on its associatedbundle (P x
x F’) [C] to lift curvesin W : for a curve c in W, with c(0) = w anda pointy E
E Eq(P, F’) overw, denoteby t-+F~(c,t, y) theparallel transportof c starting

from thepointy.
ForeverywE 14/ with foot point p~(w)= (x, f(x)), constructthe curve

c :R-+W, c~(t)=t.w

where the dot denotesthe scalarmultiplication defmed in the fiber W(xf(x))
of the vector bundle W. Fix s E F Eq1(F, F’) such that f = w ,,,s and constr&t

a lift by

2:W—”Eq(F,F’),
2(w)=FT(c , l,s(x))

if w has (x, f(x)) as foot point. The map 2 lifts globally the tubular neighbor-

hood W aroundthe image of the sections. We prove that 2 is a smoothsection

of thebundle (Eq(F, F’), ax w,Al xAl’).

Clearly, (a x w) 2(w) = c(l) = w. To prove smootimessof 2, considera

trivializing neighborhood0 of (Eq(F, F’), a x w, Al x Al’) with w E 0 C 14! and

a restriction C,,,, of the curve c~ suchthat its imageis containedin 0. The local
expressionof theparalleltransportis a smoothmap

~ :Ix G-÷Ox C ICR

and it is the <<flow>> of the time dependentvector field ~ /3t), on C, where

F : TO x C -÷TC is the local expressionof the connection~. As the vector field
r’(aç/at), depends smoothly on the parameterw, its solutions, and hence

~T’ dependsmoothlyon w.
Now we are ready to construct the wanted local section of the bundle
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(FEq1(F, F’), ~, C~(M, Al’)) in an open neighborhood of f. The subset U of
all mappingsh whose graph lies in W is open in the FD-topologyby (3.2) and

(4.7) of [14] and containsf.

Define

a : U—~~F Eq1(F, F’), a(h) = ( 2o Graph) (h).

Clearly, a is well defmed. Moreover(~o a) (h) = w o 2 o (idM x Ii) = h.
Finally, a = 2,,, o Graph is a C~’-map, sinceit is the compositionof C,~”-maps.

Thereforea is the requiredlocal sectionatf.

ThEOREM 4.2. Comp : Hom(P,F’) x AutF -* Hom(F,F’) isaC~°-actionand its
restrictions to Hoin(F, F’) x GauP or EinbG (F, F’) x AutF are C,~” and free.

Proof: Comp : Hom(F, F’) x AutF —~ Hom(F, F’) is a C~-actionby Theorem
3.1 and Theorem 2.5. Moreover ‘p E Hom(F, F’), g E AutF, ‘p o g = ‘p implies

‘p~og~ =‘p~

and

= °

Thereforeoneis reducedto provethat the <<lower action>>is free.But this obvious
in bothcase. U

The fibers of the surjection ~ are exactly the orbits of the action of GauF.

Actually, if ‘p~ = = f, we define g by g(x) = for x EM. Then
g E GauF and ‘p o g = ~,1’. Moreover, g depends in a C~-way on ‘p and ~,f’by con-

struction. Then the following theorem follows by Lemma 4.1 and Theorem 4.2.

ThEOREM 4.3. (Hom(F, F’), ~, C~(M, M’); GauF) isaC~-principal bundle. U

COROLLARY 4.4. (AutF, ~, Diff~M; GauF) is a Cr-principal bundle.

We obtain therefore the expectedexactseguencein the categoryof NLF-Lie

groups

l~GauF~AutF-~Diff~M-~1

in which, moreover, a ‘<local splittingproperty>>holds; that is we haveexactly
the same situation as in the category of ordinary Lie groups.The exponential

maps commutewith respectto correspondingexactsequencein the Lie algebras,
i.e.
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o—~

Exp ~ Exp .~ Exp ~

l~CauF—~.AutF-~Diff~M-’l.

It is well known that Exp : erc(M) —~ DiffM doesnot contain any open neigh-

borhoodof e in its image [1, 151. By the above diagram,we seethat the same
holds for Exp : er~(P)-~4utF.Actually, U C Expei~(F)wouldimply ~(U)C

CExp ec~(M).
The interesting questionsarise, whether the exact sequenceabove splits,

i.e. a sectionof ~ exists, which is agrouphomomorphismand whetherDiff~Al=

= DiffM. The lifting of theentireDifJM seemsto be strictly relatedto thenatura-

lity of the principal bundle.A relatedquestionis discussedin [17].
SinceIIom(P, F’) is locally arcwiseconnected,we can use the following density

theoremto obtain that every C-homomorphismis homotopicto a G-equivariant
embedding,in thecaseof compactAl.

THEOREM 4.5. Let Al becompactanddimM.’ >2 dimM +1. ThenErnbG (F, F’)
is dense in iIom(F, F’).

Proof. Under our assumptionsEmb(M, M’) is dense in C~(M,M’) by (2.13)
of [18] and therefore Enlb4(Al, Al’) is densein C~(M,M’). Then the assertion
follows immediately from the local triviality of the principal bundles (Horn
(F, F’), ~, C~(M, M’); CauF) and (EmbG(F,F’), ~, Emb~(M,M’);GauF).

Finally, coming to EnibG(F, F’), we recall (see (13) of [14]) that the action
of DiffM on Emb(M, Al’) gives aC,~’-principal bundle (Ernb(M, Al’), u, U; DiffM)

with base the NLF-manifold U of the equivalenceclassesof embeddings,where

tile equivalenceis

f—Il if thereexistsg E DiffM, h = fog, f, hE Ernb (Al, M’).

As a trivial consequenceof this result and of 3), Theorem 2.4, we obtain that
(Ernb~(M, Al’), u, U~,Diff~(M)) is a C~-principal bundle,where U~is the set

of equivalenceclassesof embeddingsin E~nb~(M, Al’), with respectto the above
equivalencerelation.

Finally, by Theorem4.3 and the abovequotedresultswe have.

THEOREM 4.6. (EmbG(F, F’), u o ~, U~; AutF) is a C~°°-principal bundle. U
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An interesting question would arise rathernaturally at this point, that is to

investigatethe topology of the above principal bundles in the relevant case in

whichF’ is taken to be an n-universalbundleEC. If Al is not compact,Horn(F, EC)

may even be not connected.In the case of compactAl one can use the n-con-

nectnessof EG to prove that F(F[EC]) = Horn (F, EC) is a CauP classifying

bundle.

The classification of CauF (or AutF)-principal bundlesand related questions

will be discussedin a separatepaper.
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